Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36674035

RESUMO

Objective: To investigate whether a higher number of transcranial direct current stimulation (tDCS) sessions results in a greater improvement in upper limb function in chronic post-stroke patients. Materials and methods: A randomized, sham-controlled, double-blind clinical trial was conducted in 57 chronic post-stroke patients (≥ 3 months after their injuries). The patients were allocated to receive sessions of tDCS combined with physiotherapy and divided into three groups (anodal, cathodal, and sham). The Fugl-Meyer Assessment of Upper Extremity (FMA-UE) was used to assess the sensorimotor impairment of the patients' upper limbs before (baseline) and after five and ten sessions. The percentage of patients who achieved a clinically significant improvement (> five points on the FMA-UE) was also analyzed. Results: The FMA-UE score increased after five and ten sessions in both the anodal and cathodal tDCS groups, respectively, compared to the baseline. However, in the sham group, the FMA-UE score increased only after ten sessions. When compared to the sham group, the mean difference from the baseline after five sessions was higher in the anodal tDCS group. The percentage of individuals who achieved greater clinical improvement was higher in the stimulation groups than in the sham group and after ten sessions when compared to five sessions. Conclusions: Our results suggest that five tDCS sessions are sufficient to augment the effect of standard physiotherapy on upper limb function recovery in chronic post-stroke patients, and ten sessions resulted in greater gains.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/terapia , Recuperação de Função Fisiológica/fisiologia , Extremidade Superior , Resultado do Tratamento
2.
Neural Plast ; 2021: 5664647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603441

RESUMO

The ratio between slower and faster frequencies of brain activity may change after stroke. However, few studies have used quantitative electroencephalography (qEEG) index of ratios between slower and faster frequencies such as the delta/alpha ratio (DAR) and the power ratio index (PRI; delta + theta/alpha + beta) for investigating the difference between the affected and unaffected hemisphere poststroke. Here, we proposed a new perspective for analyzing DAR and PRI within each hemisphere and investigated the motor impairment-related interhemispheric frequency oscillations. Forty-seven poststroke subjects and twelve healthy controls were included in the study. Severity of upper limb motor impairment was classified according to the Fugl-Meyer assessment in mild/moderate (n = 25) and severe (n = 22). The qEEG indexes (PRI and DAR) were computed for each hemisphere (intrahemispheric index) and for both hemispheres (cerebral index). Considering the cerebral index (DAR and PRI), our results showed a slowing in brain activity in poststroke patients when compared to healthy controls. Only the intrahemispheric PRI index was able to find significant interhemispheric differences of frequency oscillations. Despite being unable to detect interhemispheric differences, the DAR index seems to be more sensitive to detect motor impairment-related frequency oscillations. The intrahemispheric PRI index may provide insights into therapeutic approaches for interhemispheric asymmetry after stroke.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Transtornos das Habilidades Motoras/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos das Habilidades Motoras/diagnóstico , Transtornos das Habilidades Motoras/etiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Extremidade Superior/fisiopatologia
3.
Neurol Sci ; 41(9): 2591-2598, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32253636

RESUMO

OBJECTIVE: To compare the interhemispheric asymmetry of the motor cortex excitability of chronic stroke patients with healthy and to observe if the magnitude of this asymmetry is associated to sensory-motor impairment and stroke chronicity. METHODS: This cross-sectional study was performed with chronic stroke and aged and sex-matched healthy individuals. The interhemispheric asymmetry index was calculated by the difference of rest motor threshold (rMT) of the brain hemispheres. The rMT was assessed by transcranial magnetic stimulation over the cortical representation of the first dorsal interosseous muscle. To investigate the relationship of the asymmetry with sensory-motor impairment and injury chronicity, the stroke patients were grouped according to the level of sensory-motor impairment (mild/moderate, moderate/severe, and severe) and different chronicity stages (> 3-12, 13-24, 25-60, and > 60 months since stroke). RESULTS: Fifty-six chronic stroke and twenty-six healthy were included. We found higher interhemispheric asymmetry in stroke patients (mean, 27.1 ± 20.9) compared to healthy (mean, 4.9 ± 4.7). The asymmetry was higher in patients with moderate/severe (mean, 35.4 ± 20.4) and severe (mean, 32.9 ± 22.7) impairment. No difference was found between patients with mild/moderate impairment (mean, 15.5 ± 12.5) and healthy. There were no differences of the interhemispheric asymmetry between patients with different times since stroke (> 3-12, mean, 32 ± 18.1; > 13-24, mean, 20.7 ± 16.2; > 25-60, mean, 29.6 ± 18.1; > 60 months, mean, 25.9 ± 17.5). CONCLUSION: Stroke patients showed higher interhemispheric asymmetry of the motor cortex excitability when compared to healthy, and the magnitude of this asymmetry seems to be correlated with the severity of sensory-motor impairment, but not with stroke chronicity. SIGNIFICANCE: Higher interhemispheric asymmetry was found in stroke patients with greatest sensory-motor impairment.


Assuntos
Córtex Motor , Transtornos Motores , Acidente Vascular Cerebral , Idoso , Estudos Transversais , Potencial Evocado Motor , Humanos , Acidente Vascular Cerebral/complicações , Estimulação Magnética Transcraniana
4.
J Parkinsons Dis ; 10(2): 455-470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32065804

RESUMO

BACKGROUND: Individualized treatment guided by biomarkers certainly will play a crucial role in the more effective treatment of various neurological diseases in the near future. Identifying the electroencephalographic biomarkers in the brain of patients with Parkinson's disease (PD) may help in the decision-making process of health professionals regarding the non-invasive brain stimulation (NIBS) protocols. OBJECTIVE: To summarize quantitative electroencephalographic (qEEG) characteristics of patients with PD with motor symptoms at rest or during movement to identify potential biomarker associated with motor impairment in PD. METHODS: A systematic search was conducted in the databases MEDLINE/PubMed, LILACS/BIREME, CINAHL/EBSCO, Web of Science, and CENTRAL, performed according to PRISMA-statement guidelines. Two independent authors searched for studies that reported qEEG data related to motor outcomes at rest or during movements in patients with PD and compared the data with control healthy group. The studies' methodological quality was examined using the Cochrane Handbook. Studies/sample characteristics, qEEG parameters/analyses, and the studies' results were summarized. Prospero-register: CRD42018085660. RESULTS: Nineteen studies (18 cross-sectional/one cross-over) with 312 PD patients and 277 controls, published between 1994-2018, were included for the qualitative analysis. In comparison to healthy controls, our findings suggest a slowing down of the cortical activity in patients with PD due to an increase of slower band waves activity and a decrease of fast band waves at resting and during complex movement execution mainly in the central and frontal cortex. CONCLUSION: Slowing down of cortical waves suggest excitatory NIBS for motor impairment in PD. However, qEEG biomarker for motor symptoms of PD cannot be established yet because the studies that related qEEG with motor outcomes presented methodological poor quality.


Assuntos
Biomarcadores , Excitabilidade Cortical , Eletroencefalografia , Doença de Parkinson/diagnóstico , Eletroencefalografia/métodos , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...